Mätningar av tungmetaller i fallande stoft i Landskrona

2014
Sammanfattning

Vid fallande stoft undersökningen 2014 gjordes en jämförelse av nedfallet av bly respektive antimon vid de olika mätstationerna. Syftet var att ta reda på om det finns något samband mellan nedfallet av bly och antimon, eftersom Boliden Bergsöe tillsätter antimon till blöyet vid deras raffinering. Undersökningen visar att det finns en korrelation mellan tungmetallerna förutom för mätplats "Hilleshög".

Det summerade genomsnittsvärdet för blynedfallet vid "S:a Bergsöe" och "ScanDust" under perioden 1990-2014 är fortsatt högt och dessa två mätstationer som ligger närmast Boliden Bergsöe visar att trenden inte blivit bättre med mindre nedfall under de senaste åren.

Landskrona har en fortsatt hög belastning av metaller i luften och det finns ännu inga tydliga långsiktiga tendenser till minskad belastning. Det är därför väsentligt att fortsätta med mätningarna, dels för att kunna avläsa belastningen på miljon och dels för att kunna se vilka resultat som miljöåtgärder på industrierna och på kommunala verksamheter ger.
Syfte

Projektet syftar till att bevaka miljötillståndet i Landskrona med avseende på metallföroringar samt att kontrollera resultaten av miljöförbättringar inom industrin och kommunala verksamheter.

Bakgrund

Luftkvalitén i Landskrona

Mätprogrammets omfattning

Mätlokaler & mätparametrar

Stoft från mätstationerna analyseras med avseende på bly (Pb), kadmium (Cd), koppar (Cu), krom (Cr), zink (Zn), nickel (Ni), svavel (S), natrium (Na), kalcium (Ca) och antimon (Sb).
Mätmetodik
För insamling av fallande stoft används en NILU-nedfallstratt (se figur 2). Instrumentet består av ett cylindriskt plastkärl som är placerat i en stålram. Kärlet innehåller en liten mängd vätska för att kunna "binda" torrdepositionen. Instrumentet exponeras i en månad varefter insamling av proven samt blandning av två månaders torrdeposition sker. Tolv månaders exponering resulterar således i sex stycken tvåmånadersprov. Proven analyseras med avseende på total stoftmängd samt de ämnen som nämns i föregående stycke. Metallerna analyseras med hjälp av ICP-MS.
Figur 2: Nedfallstratt
Diagram 1*. Visar en vindros över året 2014
Vindfrekvens från cirkelns mittpunkt och ut till den yttersta ringen motsvarar 10 %.

Var nedfallet är störst styrs till stor del av vindriktningen under mätperioden. Enligt vindrosen för Landskrona under perioden den 1 januari 2014 till den 31 december 2014, var den enskilt förhårslande vindriktningen östlig (ca 35 %), följt av västlig (ca 29,5 %). Vindfrekvensen i procent angivet i kvadranten norr till väst (ca 15,5 %), norr till öst (ca 17,5 %), syd till öst (ca 34 %) och syd till väst (ca 33 %), se vindrosen i diagram 1 ovan.
Resultat

Stoftsammansättning
I diagrammen nedan följer en översikt av sammansättningen av tungmetaller i stoft under år 2014 i snitt per månad.

Figur 3. Visar stoftsammansättningen för Hilleshög
Figur 4. Visar stoftsammansättningen för S:a Bersöe

Figur 5. Visar stoftsammansättningen för ScanDust
Figur 6. Visar stoftsammansättningen för Sydpunkten

Figur 7. Visar stoftsammansättningen för Vallgården
Vid mätstationen "S:a Bergsöe" består stofo sammansättning till väldigt stor del av bly samt en noterbar andel zink (figur 4). En liknande stofo sammansättning har mätstationen "ScanDust" (figur 5) medan vid mätstationen "Sydpunkten" dominerar zink (figur 6). "Hilleshög" och "Vallgården" har klart mindre nedfall av alla tungmetaller jämfört med de andra tre mätstationerna som ligger inne på industriområdet (figur 3 och 7).

Trenddiagram – år

I trenddiagrammen nedan finns mätresultat från 1988 till 2014 inkluderade för alla fem mätstationerna. Värdena är uttryckta i mg/m² och är det sammanlagda nedfallet under ett år.

![Nedfall av bly](image)

Figur 8. Trenddiagram över nedfallet av bly i stoft per år under perioden 1988-2014.

Figur 9. Trenddiagrammet visar den summerade blymängden per år för de tre mätstationerna som ligger i industriområdet ("S:a Bergsöe", "Sydpunkten" och "ScanDust").

Den totala mängden nedfallet bly per år har varierat kraftigt vid de tre mätstationerna som ligger på industriområdet, sedan början på 2000-talet (figur 9).

Figur 10. Trenddiagram som visar det summerade årsmedelvärde blynedfallet i området kring Boliden Bergsöe och ScanDust.
Det summerade genomsnittsvärdet för blynedfallet vid ”S:a Bergsöe” och ”ScanDust” under perioden 1990-2014 är 149,3 mg/m². För perioden 1990-2000 (10 år) var det summerade genomsnittsvärdet för blynedfallet 130,8 mg/m² och under perioden 2010-2014 (5 år) var det 152,0 mg/m². De två mätstationerna ligger närmast Boliden Bergsöe och visar att trenden inte blivit bättre med mindre utsläpp under de senaste åren.

Nedfall av koppar

![Diagram över nedfallet av koppar i stoft per år under perioden 1988-2014.](image)

Figur 13. Trenddiagram över nedfallet av koppar i stoft per år under perioden 1988-2014.

Nedfall av zink

![Diagram över nedfallet av zink i stoft per år under perioden 1988-2014.](image)

Figur 14. Trenddiagram över nedfallet av zink i stoft per år under perioden 1988-2014.

Nedfall av krom

Figur 15. Trenddiagram över nedfallet av krom i stoft per år under perioden 1988-2014.

Årsdeposition – senaste 5 åren
I figurerna nedan redovisas det totala nedfallet av aktuella ämnen under åren 2010-2014.

Nedfall av bly

![Diagram showing beryllium deposition from 2010 to 2014](image)

Det man kan sammanfatta från resultaten av blymängderna de senaste 5 åren (figur 16) är att blymängden varierar mycket både på provplats ”S Bergsöe” och ”ScanDust”. Värdena för provplatserna ”Hilleshög” och ”Sydpunkten” är relativt låga och har inte förändrats så mycket de senaste åren. Runt 2009 genomförde Boliden Bergsöe åtgärder för att minska den diffusa damningen (som till stor del består av bly) från företaget och 2009 hade mängden bly blivit mindre vid ”S:a Bergsöe”. Samtidigt ökade blynedfallet vid ”ScanDust” kraftigt. Under 2014 har mängderna sjunkit markant för ”S Bergsöe” och ”ScanDust”.

Nedfall av nickel

![Diagram showing nickel deposition from 2010 to 2014](image)

De senaste 5 år har nickelmängden vid främst ”Sydpunkten” varierat kraftigt (figur 17). De övriga mätstationerna har haft en relativt stabil mängd nedfall av nickel under samma period.
Nedfall av kadmium

Nedfall av koppar

Kopparmängderna har inte haft någon tydlig trend på någon av mätstationerna de senaste 5 åren (figur 19). Dock har kopparmängderna vid "Sydpunkten" varierat väldigt mycket, med mycket höga värden under 2012 och 2013.

Zinkmängderna följer samma otydliga trend som kopparmängderna (figur 20) och även för zink är det "Sydpunkten" som har högst värden och varierar mest i mängderna de senaste 5 åren.

Krommängderna har varit relativt stabila vid "ScanDust" och "S:a Bergsöe" de senaste 5 åren medan mängderna vid "Sydpunkten" har varierat kraftigt under samma period (figur 21).
Trenddiagram – månader

I trenddiagrammen som presenteras nedan återfinns månadsvärden för perioden 1988 till 2014. I figur 22 och 23, finns bly- och kadmiumdeposition från mätstationerna ”S:a Bergsöe” och ”Hilleshög”.

”S:a Bergsöe” har ersatts av ”ScanDust” i figur 24, 25, 26 och 27 som visar trenddiagram för krom, zink, nickel och koppar. Från och med 1993 utförs analyserna på tvåmånadersprov, vilket förklarar att två månader har samma värde efter denna tidpunkt.

Generellt visar mätvärdena en nedåtgående trend fram till 2000-talet för de aktuella ämnen, men därefter kan det inte ses en fortsatt nedåtgående trend med minskande metallmängder.

De högsta månadsvärdena under 2014 för bly, krom, zink och koppar upptäcks under sommarmånaderna, mest dels juli till augusti.

För koppar återfinns ett flertal mycket höga månadsvärden för både ”ScanDust” och ”Hilleshög” under 2000-talet. Under 2014, upptäcks väldigt höga värden för nedfall av koppar vid provpunkt ”ScanDust” under juli och augusti (9,5 mg/m², månad) jämfört med året innan samma månader (2,2 mg/m²). (figur 27).

![Nedfall av bly]

Jämförelse av bly och antimon

Mätningarna visar att det finns en tydlig korrelation mellan nedfallet av bly och antimon, utom för mätplats "Hilleshög". Sambandet visar att den huvudsakliga blykällan är Boliden Bergsöe då de tillsätter antimon till blyet vid raffineringen.

Diagrammen nedan visar nedfall av antimon med en faktor 10 för att kunna se ev. korrelation med bly (figur 28, 29, 30, 31 och 32).
Figur 29. diagram som visar nedfallet av bly och antimon vid provpunkt "ScanDust" under 2014.

Figur 30. diagram som visar nedfallet av bly och antimon vid provpunkt "Hilleshög" under 2014.

Figur 31. diagram som visar nedfallet av bly och antimon vid provpunkt "Sydpunkten" under 2014.
Jämförelse med bakgrundsivåer

<table>
<thead>
<tr>
<th>Ämne</th>
<th>(A) Depos. Bakgrund Vavihill, Svalöv mg/m², år (2014)</th>
<th>(H) Nedfall Hilleshög mg/m², år (2014)</th>
<th>Kvot H/A</th>
<th>(M) Nedfall Maxvärde Landskrona mg/m², år (2014)</th>
<th>Kvot M/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>0,33</td>
<td>1,64</td>
<td>5</td>
<td>56,70</td>
<td>171</td>
</tr>
<tr>
<td>Cr</td>
<td>0,03</td>
<td>0,39</td>
<td>13</td>
<td>4,39</td>
<td>146</td>
</tr>
<tr>
<td>Cu</td>
<td>0,72</td>
<td>4,32</td>
<td>6</td>
<td>28,07</td>
<td>38</td>
</tr>
<tr>
<td>Cd</td>
<td>0,12</td>
<td>0,03</td>
<td>0,25</td>
<td>0,26</td>
<td>2</td>
</tr>
<tr>
<td>Zn</td>
<td>0,41</td>
<td>9,9</td>
<td>24</td>
<td>49,4</td>
<td>119</td>
</tr>
<tr>
<td>Ni</td>
<td>0,09</td>
<td>0,65</td>
<td>7</td>
<td>3,61</td>
<td>40</td>
</tr>
</tbody>
</table>

Jämförelse med andra städer

<table>
<thead>
<tr>
<th>Kommun</th>
<th>Pb</th>
<th>Cd</th>
<th>Cr</th>
<th>Zn</th>
<th>Ni</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/m², år</td>
<td>mg/m², år</td>
<td>mg/m², år</td>
<td>mg/m², år</td>
<td>mg/m², år</td>
<td>mg/m², år</td>
</tr>
<tr>
<td>Landskrona, maxvärde 2014</td>
<td>56,70</td>
<td>0,26</td>
<td>4,39</td>
<td>49,4</td>
<td>3,61</td>
<td>28,07</td>
</tr>
<tr>
<td>Landskrona, minvärde 2014</td>
<td>1,64</td>
<td>0,03</td>
<td>0,39</td>
<td>9,9</td>
<td>0,65</td>
<td>4,32</td>
</tr>
<tr>
<td>Malmö (2009/2010)</td>
<td>0,55*</td>
<td>0,04*</td>
<td>0,35*</td>
<td>15,8*</td>
<td>0,31*</td>
<td>3,3*</td>
</tr>
<tr>
<td>Stockholm (2003/2004)**</td>
<td>0,48**</td>
<td>0,01**</td>
<td>0,22**</td>
<td>1,61**</td>
<td>0,22**</td>
<td>0,73**</td>
</tr>
</tbody>
</table>

* mätning av torrdeposition hösten 2009 till hösten 2010

Generellt är maxvärdena för Landskrona högre än för övriga städer (tabell 2). Detta är speciellt tydligt för bly, vars värde är avsevärt högre än för någon av de andra städernas. Även krom, zink och kopparmängderna är höga jämfört med de uppmätta värdena i Malmö och Stockholm. Värdena tagna från Stockholm avser torrdeposition utslaget över hela kommunens area som ett medelvärde per m² i kommunen. Det medför att dessa värden generellt är lägre än Landskronas värden då de även innefattar stora ytor där tungmetaller inte faller ner i lika stor utsträckning som de ytor som mäts i Landskrona (3 av 5 mätstationer är i industriområden).
Diskussion & slutsatser

Utsläppskälla för bly är Boliden Bergsöe samt huvudsaklig utsläppskälla för zink bedöms vara ScanDust. Det summerade genomsnittsvärdet för blynedfallet vid "S:a Bergsöe" och "ScanDust" under perioden 1990-2014 är 149,3 mg/m². För perioden 1990-2000 (10 år) var det summerade genomsnittsvärdet för blynedfallet 131 mg/m² och under perioden 2010-2014 (5 år) var det 152,0.

Efter 2001 skedde en förändring i nedfallsmonstret för flera tungmetaller;
- Fram t.o.m. 2001 var blymängderna klart störst vid "S:a Bergsöe. Efter 2001 ökade nedfallet vid "ScanDust".
- För nickel och krom skiftade trenden för vilken mätstation som hade störst nedfall abrupt från "ScanDust" till "Sydpunkten".

Mätstationen "Sydpunkten" hade störst nedfall av zink i år
Mätstationen "ScanDust" dominerade av nedfall av bly och därefter zink
Mätstationen "S:a Bergsöe" hade störst nedfall av bly och därefter zink
Bakgrunds-mätstationer Hilleshög och Vallgården hade högst nedfall av zink.

Fördelningen av nedfallet under året visar att de högsta månadsvärdena under 2014 för bly, krom, zink och koppar uppvisas under maj till augusti. En teori skulle kunna vara att en del verksamheter drar ner på sin verksamhet under sommaren, t.ex. filterbyte och vattenbegjutning görs kanske inte i samma utsträckning som vid full drift, vilket i sin tur möjlig skulle
kunna leda till ökad diffus damning. En annan orsak kan vara att man under vintermånaderna haft en högre andel nordliga vindar vilket medfört att dammande utsläpp inte fängats upp av mätutrustningen på industriområdet. Detta får undersökas närmare.

Vindriktningen styr till stor del var nedfallet av stoft hamnar. Det förhårskaede vindriktningen under året var östlig (ca 35 %), följt av västlig (ca 30 %). En förklaring till förändrat nedfallsrinnstret kan vara skillnader i vindrikningsfördeleningen över åren.

Provpunkten ”Sydpunkten” har under året varit tvungen att flytta ca 100 meter norrut pga. att markägaren behövde nytta platsen där den stod. Detta orsakade att provplatsen inte var aktiv under två veckor i augusti, därmed data under den perioden inte tillförhind.

De totala nedfallsmängderna av bly på industriområdet, var ca 30 gånger större vid mätpunkterna ”ScanDust” och ”S Bergsö”, i jämförelse med än mätstationen ”Hilleshög” i norra delen av tätorten. Jämförelsen i tabell 1 och tabell 2 tyder på att nedfallet av metaller i Landskrona är kraftigt förhöjt jämfört med depositionen i Vavihill och med en del andra städer i Sverige. Blynedfallets maxvärde för Landskrona 2014 var 171 gånger högre än värdet för bakgrundsstationen vid Vavihill i Svalövs kommun 2014, till skillnad från 1462 gånger högre som det var föregående år. Det är oklart vad det år som gjort att halterna var så höga 2013, men generellt så beror de höga kvoterna till största del på att maxvärdet kommer från en mätstation inne i ett stort industriområde och att värdet för Vavihill är taget från en mätstation på Söderåsen i Svalövs kommun som är relativt opåverkad av lokala källor. Värdet från Vavihill är med i rapporten för att ge en uppfattning om bakgrundsvärdet i Skåne. Om man jämför Landskronas maxvärde med andra orter så hade Landskrona ett nedfall som var 103 gånger högre än blynedfallet i Malmö 2009/10, jämfört med 580 gånger högre som det var föregående år.

Mätpunkt ”Vallgården” hade ett årsnedfall av bly som var nästan fyra gånger högre än nedfallet för ”Hilleshög”, vars nedfall i sin tur var fem gånger högre än vid ”Vavihill”. Mätningarna visar att centrala Landskrona är utsatt för ett relativt högt blynedfall.